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Fluctuation Kinetics of Diffusion-Controlled 
Processes: Strong Effects Due to 
Correlations and Fluctuations 

S. F. Burlatsky I and G. S. Oshanin ~ 

We summarize some recent results related to fluctuation-induced kinetics of 
diffusion-controlled processes. We show that kinetic behavior can be drastically 
changed due to fluctuation effects, spatial correlations between particles, and 
anomalous transport properties. In addition, we show that correlation-induced 
kinetics in some systems can govern the temporal evolution over the entire time 
domain. 
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1. I N T R O D U C T I O N  

The study of  many-part icle  aspects of diffusion-controlled processes ( D C P )  
has recently at tracted considerable attention. (1 6) This is due, on one hand, 
to a close relation to fundamental  problems of statistical physics in which 
fluctuation-induced behavior  is essential, and on the other hand, to a wide 
variety of  applications ranging over an incredibly broad  spec t rum-- the  
recombinat ion of  ions and defects in solids, energy transfer in liquid and 
solid solutions, chemical reactions, electron dynamics in disordered systems 
of repulsive scatterers, biological processes with migration, annihilation, 
and multiplication, and t ransport  processes in disordered matter. (1 6) 

This review is organized as follows: in Section 2 we briefly review some 
results based on the Smoluchowski  mean-field approach.  In Section 3 we 
present exact results concerning the influence of spatial fluctuations on the 
long-time reaction kinetics in some simple systems. In Section 4 we discuss 
the reaction kinetics in systems where the spatial fluctuations are decisive 
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from the earliest times and govern the conversion of the bulk of reactive 
species. The latter are, e.g., systems with a high density of reactants or with 
correlations in the distribution of reactants, e.g., polymers, systems with an 
external particle random input or reproduction of the active species, solids 
with topological defects, and random systems with Considerable disorder or 
distant reactions, in which random motion is not diffusive. Finally, in 
Section 5 we present some new results concerning non-Fickian fluctuation- 
induced transport behavior in disordered membranes. 

2. DCP theory describes the kinetic behavior of many-particle 
processes, such as, e.g., the reactions 

A + B ~ C  (la) 

A + A ~ C  (lb) 

A + T ~ T  (lc) 

involving diffusive particles A, B, C [reactions (la), (lb)] and diffusive or 
immobile traps T [reactions (lc)]. Two particles react when their distance 
is equal to R, which is termed the reaction radius. This distance is taken 
equal to the sum of the particle radii R = R A -t-R B (or  RT)  for contact 
reactions. The direct reaction, the formation of the reaction product C or 
capture of A in Eq. (lc), occurs with a finite probability which determines 
the direct rate constant K. The backward reaction, unimolecular breakup 
of C (release from the trap), is defined by the intrinsic constant K . 

The field of DCP was initiated in the work of Smoluchowski (7~ con- 
cerning the kinetics of irreversible coagulation of colloid particles. His 
approach, based on the single-particle diffusion equation with an absorbing 
boundary, leads to the following mass equation for the mean densities of 
particles: 

CA(t)  = CB(t) = -KeffCA(t) CB(t) (2a) 

where the overdot denotes time derivative and the "effective" rate coef- 
ficient in three-dimensional systems is given by (for 47tDR ~ K) 

Kefr=4rcDR[1 + R/(Tt Dt)l/2], D=DA + DB (2b) 

The Smoluchowski approach is the basis of traditional mean-field methods 
in DCP investigations. r In particular, Kerr has been evaluated for the 
case 4rcDR>>K (see ref. 8). A representation analogous to Eq. (2b) was 
derived for the effective constant of the backward reaction r176 in reversible 
reactions. Much emphasis has been put on studying the reactions (1), 
kinetics in low-dimensional systems (d~< 2), and in systems with nonlocal 
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interactions between species. It was shown that in low-dimensional systems 
the effective rate constant becomes an effective rate coefficient, i.e., Keff 
becomes a function of time due to the peculiar properties of low-dimen- 
sional random walks. The potential interactions between reactive species 
does not affect the long-time dependence of C(t), but lead to a renormaliza- 
tion of the effective rate constants within the framework of mean-field 
descriptions (1~ and to a drastic change in the kinetic laws at short 
times.(~3 

3. The Smoluchowski approach has a major limitation since it 
ignores the many-particle nature of DCP problems. It is easily shown that 
it gives a lower bound for the mean concentrations/141 The course of any 
reaction leads to the appearance of spatial correlations in the distribution 
of reactants. Within the Smoluchowski approach only the short-wave 
two-particle correlations are taken into account, but long-range 
many-particle correlations are neglected, and the independence of reaction 
probabilities for each reacting pair is assumed. 

It is worthwhile to mention that for a wide variety of many-particle 
problems in statistical physics the mean-field approximations are quite 
acceptable. In contrast, problems in which many-particle behavior is 
significant are, as a rule, unsolvable. However, within the last years there 
has been considerable progress in developing a many-particle description of 
DCP kinetics. It has recently been shown that a great majority of DCP are 
correlation-controlled in the large-t limit and, at the same time, a large 
body of exact results has been obtained. ~14 17~ In particular, it has been 
shown that the kinetics of the trapping reaction in Eq. (lc) at t ~  
depends drastically on the spatial distribution of traps T. For a random 
placement of traps the Smoluchowski approach, which predicts an 
exponential decay of A, is invalid and the trapping kinetics exhibits the 
unusual behavior ~4-21t 

In CA(t  ) OC - - t  a/d+2 (3) 

This stretched-exponential decay stems from the presence of large, but very 
rare, trap-free cavities. In such a cavity the particle lifetime is anomalously 
long and the contribution of these long lifetimes leads to the decay law in 
Eq. (3). It is worthwhile to mention that Eq. (3) is similar (up to the 
inverse Laplace transform) to the well-known Lifschitz/22) result concerning 
the low-energy spectrum of an electron in an array of randomly distributed 
immobile scatterers. In the seminal paper on the subject (18) this law was 
evaluated as a lower bound on the survival probability, then an asymptoti- 
cally exact result was derived, (~9~ and finally, corrections to the terms in 
Eq. (3) were calculated. (14) 
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The second important instance in which spatial correlations are 
important is the strictly bimolecular (SB) irreversible reaction in Eq. (la) 
with CA(0) = CB(0). It was shown in refs. 20 and 23-25 that the mean con- 
centrations of A and B are characterized by an anomalous long-time decay 

CA(t)  = C . ( t )  oc t -d/4 (4) 

which displays a slower kinetic behavior for d<  4 as compared to the 
mean-field predictions. The point is that the difference z ( r , t ) =  
CA(t) -- CB(t) induced by initial small fluctuations in the concentrations of 
A and B is not affected by the recombination reaction, because A and B 
particles disappear only in pairs. The diffusive decay of z(r, t) is a slower 
process than the mean-field recombination decay of Eq. (2). For large t the 
reaction bath becomes separated into large domains (of characteristic size 
R oc t  1/2) containing particles of only one type, and the kinetic behavior is 
controlled by the diffusive "transport" of A and B from regions enriched by 
A species and ones enriched by B into one another, which leads to the 
decay kinetics of Eq. (4). With the help of such qualitative arguments 
Ovchinnikov and Zeldovich (2~ presented the following simple estimate: 

CA, B(t) = �89 t)l ) oc t  - ' /4 (5) 

The exact equation for the evolution of the mean density contains the pair 
correlation functions (23) 

t~A,a(t ) = - - k [ C Z , , ( t ) +  (~iCA(r, t)6Ca(r,  t ) ) ]  (6) 

The special type of decoupling based on fourth-order correlations leads to 
the resul(23) 

CAm(t) = [-- (CSCA( r, t) fiC,(r, t ) ) ]  m oct  all4 (7) 

It is known that the estimate in Eq. (5) is a lower bound on the mean con- 
centration, ~14~ while the estimate in Eq. (7) gives an upper bound. These 
inequalities [and the monotonic behavior of C(t)] strongly suggest that 
the fluctuation-induced asymptotic laws of Eqs. (5) and (7)are asymptoti- 
cally exact. A similar proof was published by Bramson and Lebowitz in a 
set of fundamental papers. (15'16) 

We mention that if the initial A and B densities are not equal to each 
other, correlation effects are suppressed at large times and the mean-field 
exponential decay is valid. (~4 16,5) The mean-field description is also valid 
for the SB irreversible reaction of charged species. (26) Spatial regions 
created by density fluctuations induce local electric fields which smooth the 
initial thermal inhomogeneities faster than diffusion. 
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For the reversible reactions (1) there always exists a linear combina- 
tion of local concentrations not affected by reaction due to the mass con- 
servation law. In consequence, a wide variety of reversible bimolecular 
reactions are defined by a power-law approach to equilibrium at 
t ~ 00 (27 31.5) in place of the exponential mean-field decay law. For exam- 
ple, such kinetic behavior is exhibited by the reversible binary reaction ~27) 
in Eq. (ib) or more general coagulation/fragmentation reactions (3~ and the 
relaxation of the short order parameter in solutions. (5~ A power-law decay 
defines the long-time kinetics of the strictly bimolecular reversible reaction 
in Eq. (la), of uncharged species, (27'28) nonstoichiometric reactions (31) in 
(la), and reactions (la) that include charged species. (29"3~ Interestingly, in 
the latter case the long-time decay is induced by a special type of density 
fluctuation, in which fluctuations have the same sign, i.e., the occurrence of 
regions in which deviations from the mean density have the same value and 
sign both for A and B. These electrically neutral fluctuations are smoothed 
only by diffusion, which causes a power-law approach to the equi- 
librium/ 29'3~ If the initial and steady states are described by a flat fluctua- 
tion spectrum, then the mean concentration relaxation is defined by 

c A ( t ) - C A ( D )  ~: t ~/2 (8) 

Summing up the results on the long-time behavior of reversible reac- 
tions, we conjecture (29-31) that a power-law approach to equilibrium is 
valid for all reversible reactions, since for an set of successive and parallel 
reactions there always exists a pure diffusive mode--a  linear combination 
of local concentrations not affected by chemical conversions (e.g., the sum 
of reagent and product local densities). 

However, it should be mentioned that in the simplest systems con- 
sidered above, with random homogeneous, mutually independent initial 
particle distributions without correlations and with small mean concentra- 
tions, fluctuations influence only the long-time kinetic tails. This means 
that a very small amount of particles C/ [Cy= C(t/), t r a  crossover time 
from the mean-field to the fluctuation-induced kinetic behavior] reacts 
in the fluctuation-induced regime. For SB reactions in Eq.( la) ,  
ln[Cf/C(O)] oc in fl and for the trapping problem In ln[Cs/C(O)] ~: In fl, 
where fl is the initial fraction of reactants, fl = R d max[CA(0), CB(0)]. Here 
we have a straightforward analogy with second-order phase transitions in 
systems with small coupling, in which fluctuations are important in the 
narrow region near the critical point. The latter is the analog of the 
asymptotic time regime in DCP problems. 

4. Correlation effects are essentially enhanced in systems prepared by 
a steady external source. (32 36) If the particles A and B are generated 
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randomly and independently of each other at a constant average.rate, the 
irreversible reaction in Eq. (la) (and also the reversible one (29'3~ leads 
to the appearance of strong correlations in the distribution of species. The 
long-wavelength asymptotic behavior of the fluctuation spectrum 
changes (32 35)--it is not flat. Interestingly, the approach of CA(t) to equi- 
librium and the formation of the fluctuation spectrum obey the fluctuation- 
induced law CA(OO)--CA(/) OC r in d = 3  (see ref. 34), in place of the 
exponential mean-field prediction. The existence of an essential peculiarity 
in the steady-state fluctuation spectrum leads to a change in the long-time 
kinetics of Eq. (la) after the source is switched off, (32) CA(t) oc t -1/4 for 
d = 3. As in the systems considered earlier, nontrivial relaxation laws and 
the long-wavelength peculiarities of spatial correlates are caused by a 
balance between fluctuations of z(r, t) generated by the random source of 
particles and diffusive smoothing. It is important to note that in low- 
dimensional systems (d~< 2), with arbitrary relations between the rate con- 
stants, the diffusive processes fail to equalize the spatial inhomogeneities. 
This leads to a spontaneous separation of homogeneous (on average) 
systems into macroscopic domains containing particles of only one 
type.(32 37) Aside from this, the average concentration increases with the 
generation time. These effects have also been observed numerically (35) and 
predicted theoretically (37'38) for reactions on fractals. 

A similar picture is evident in low-dimensional systems with parallel 
reactions--recombination (A + B ~ 0), slow annihilation (A + A --, 0, 
B + B ~ 0 ) ,  and multiplication (A~nA,  B ~ n B ,  n > l ) .  In the course of 
reactions the system divides into domains of random linear sizes. After this, 
the larger domains begin to swallow their smaller neighbors. Both the 
growth of the average linear domain size and the evolution of mean 
concentrations are governed by slow logarithmic laws. (39) 

It also appears that fluctuation effects are strongly enhanced by multi- 
plication reactions. For instance, a trapping reaction in Eq. (lc) in 3D, 
followed by the multiplication of A, exhibits unusual behavior if the mean 
trapping rate 4rc~DCT is larger than the multiplication rate constant k m. In 
such systems CA drops exponentially, i.e., in accord with the mean-field 
theory law 

CA(t) = CA(0) exp [ - (4~aOc T -- k , , ) t ]  

After the concentration decreases to the small value CA(0) x 
exp(-  const/x/~ ), it remains approximately constant for a long time, after 
which it grows as exp(kmt)  (see ref. 14). Hence the kinetic behavior is not 
monotonic. 

Fluctuation effects are also very important in reactive systems with 
nondiffusive random motion and distant reactions, characterized by trans- 
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fer rates co(r) dependent on the mutual distance between reactants. For 
multipolar transfer (MT), w(r) oc r s, and for exchange-mediated transfer 
(ET), In w(r) oc - r .  Let us consider the averaged survival probability P(t) 
of excitations migrating along a disordered system consisting of donors and 
accepters which permit quenching. It can be shown (4~ that in a random 
field that determines the probability of quenching, the averaged survival 
probability can be only decreased by the random motion provided that the 
latter is uncorrelated with random field realizations. On the basis of this 
simple statement and rigorous lower bounds we have obtained (4~ exact 
result for P(t) at t--* oo: in P(t) oc t d/~ for MT, and In P(t) oc - lnJ ( t )  for 
ET. This survival probability is supported by excitations which do not 
move from the initially excited donors. It has been also shown that for a 
wide class of transfer rates and concentrations the fluctuation-induced 
kinetics is valid even at early stages of the process. 

In ref. 41 we have studied the kinetics of static recombination (or 
"direct reaction"; see refs. 42 and'43) in a system of randomly distributed 
immobile particles of two types (A + B--* C). In this we have dealt only 
with the case of equal mean concentrations: CA(0)=CB(0 ). We have 
also analyzed a system of particles of one type (A + A  ~ C). Since the 
smoothing influence of diffusion is absent, in this case one expects that 
the role of fluctuations is even more essential than in earlier cases. 

Let us consider a system in which A and B particles are initially 
located at random points {r A} and {r~}. The probability dp for two par- 
ticles A~ and Bj to react and be removed from the system in time interval 
dt is determined by a transfer rate w(ru) that depends on the mutual 
distance rij. The probability for an isolated pair (A, B) not to react until 
moment t is given by ~(~  The survival probability 
ra(t), i.e., the ensemble-averaged probability for a given particle A~ to 
survive until moment t, satisfies the set of equations 

_ w ,  = Z   w(rij) (9) 
dt J 

where W i is the ensemble-averaged total transfer rate of particle A i (the 
particle Ai can react with the particle Bj only in case both of them sur- 
vived). Turning to the particle concentration C A ( r  , / )=  C A ( r  , 0)-"CA(r, t), 
we obtain from Eq. (9) 

C'A(r, t) = --CA(r, t) f w(r -- r') CB(r, t) dr' (10) 

with a similar equation for C~(r, t). 
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The mean-field approximation, which corresponds to neglecting 
correlations between the particles of the same type, yields the asymptotic 
law 

C(t) oc ln(t) a (11) 

The mean-field decay law in Eq. (11) describes correctly the behavior of a 
system with particles of a single type (A + A ~ C). ~14/The fluctuation decay 
law for the (A, B) system with the ET rate 

C(t)  oc ln(t)  a/2 (12) 

has been suggested and explained in ref. 14. It has been confirmed by the 
numerical solution of Eqs. (9) within the framework of the Kirkwood 
approximation for correlation functions, as well as having been tested by 
simulations. (44) 

In ref. 41 it was proved that for reaction A + B --+ C and the exchange 
transfer rate the result of Eq. (12) represents the exact decay law, and for 
the multipolar transfer rate a new exact result has been obtained, (41) 

C(t)  oc t  -a/~2" d) (13) 

(s should be greater than d). It has also been proved that the mean-field 
decay law in Eq. (11) for the exchange transfer rate, and the mean-field 
decay law 

C(t)  oc t  -a/s (14) 

for the multipolar transfer rate, describe the kinetics of A + A --+ 0 reactions 
correctly. 

Reaction kinetics are drastically changed in systems with a high 
volume fraction of reactants (above the percolation threshold), in polymer 
solutions, and in crystals with topological defects. (46) For these, the correla- 
tion effects are important even at earliest times. Let us consider the kinetics 
of Eq. (lc) for two percolationlike systems for which, in the absence of a 
reaction, the A particles are localized in finite volumes. The A particles, 
each of a charge q, diffuse in the presence of an external uniform electric 
field on a lattice, whose sites can be occupied by immobile, randomly dis- 
tributed, entanglements S. It w a s  s h o w n  (45'46) that if there exists a slow 
trapping of A by S, the reaction kinetics goes on as follows. In the absence 
of an electric field the long-time behavior is governed by the correlation- 
induced law given in Eq. (3). However, intermediate kinetics, which defines 
the annihilation of the bulk of A, is also not properly given by the 
mean-field result, but rather by 

In C A ( t  ) CC - -  t d/d+ 1 (15) 



Fluctuation Kinetics 1103 

In an electric field the decay in Eq. (15) also defines the intermediate 
kinetics, but the long-time decay follows an exponential dependence upon 
time 

in CA(t ) oC - -Et  and in CA(t) oC --E2t (16) 

for E >> Ec~ and E,~ Eor, where E~ is a critical value of the external field. 
In the second case, particles S are neutral with respect to the reaction and 
the decrease of A occurs in an encounter with particles of a third species 
T, where trapping centers are randomly distributed on a lattice among the 
sites not occupied by particles of species S. In the limit t --* oo, Ca(t) tends 
to a constant value CA(m), which is equal to the fraction of localization 
cavities which contain no trapping centers. In the limit t --, oo we l ind  (45'46) 

ln[CA( t ) - -CA(OO)]  OC - - t  1/2 ( E = 0 )  
(17) 

lnECa(t)--CA(OO)] oC --c~ln t ( E > 0 )  

where c~ is a nonuniversal constant dependent on E and concentrations. 

5. The course of reaction kinetics for disordered systems is often 
completely determined by the distribution of diffusion fluxes. In this last 
section we present some results concerning the steady-state diffusive flux 
for two models-- the membrane containing randomly distributed repulsive 
impurities and the finite disordered 1D lattice with random nonsymmetric 
transition probabilities (the Sinai chain). We show that fluctuations are 
important in both cases and the steady-state flux is non-Fickian. 

In ref. 47 we investigated the steady-state permeability x(L) of a three- 
dimensional barrier membrane containing randomly distributed immobile 
repulsive impurities as a function of the membrane thickness L. The 
diffusive permeability of the membrane is defined as 

L 
Z - -  ( J )  (18) 

D A Cph 

where D is the diffusion coefficient in the membrane without impurities, 
A Cph is the difference between substance concentrations in phases outside 
of the membrane on both sides of it, and ( J )  is the mean diffusive flux 
(averaged over different realizations of the distribution of impurities). 

We have demonstrated that fluctuations in the distribution of the 
impurities enhance the value of •(L) and cause anomalous behavior com- 
pared to Fick's law. For  thin membranes (L < L*) the permeability Z falls 
off as e x p ( - c o n s t . L ) ;  for intermediate thicknesses (L* < L < L * * )  the 
stretched-exponential dependence is valid, ;~ oc exp( -L~) ,  7 <  1; and for 
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L > L** the permeability )~ approaches a constant value, i.e., Fick's law is 
valid. The borderline thicknesses L* and L** are functions of the tem- 
perature (L* ~ o~ and L**/L* ~ oe as T ~  0), the impurity concentration, 
and the parameters of the repulsive potentials. Analogous dependences 
were predicted for the steady flux through the barrier membrane containing 
randomly distributed hard-core obstacles. (48) 

For  the one-dimensional Sinai chain the random walk is defined 
as follows: at each site j there is a probability pj to hop to site j +  1 
and probability q j=  1 - p j  to hop to site j - 1 .  The set {pj} consists of 
independent random variables, which satisfy 

(ln[pj/qjJ ) = f p(pj) dpj ln[pj/(1 - pj) ] = 0 (19) 

where the angle brackets refer to the disorder average with the distribution 
p(p). Sinai (49) has proved rigorously that the mean-square displacement of 
a walker in such a system is proportionally to In 4 t, t being the time. This 
remarkable slowing down of the diffusion process, known as Sinai 
diffusion, or random walk, has led to a large number of investigations. 

It has been suggested that Sinai diffusion might be relevant to various 
physical phenomena, such as 1If noise, (5~ the slow dynamics of random 
field magnets, (51) the dynamics of dislocations in doped crystals] 51) and 
anomalously slow diffusion of particles constrained to move on a random 
linear structure in an external field. (52) For  more details there are 
exhaustive reviews on this subjectff 1'53) 

In ref. 54 we have studied the disorder average steady flux ( J ( N ) )  in 
a one-dimensional Sinai chain as a function of chain length N, a property 
which actually depends on a new class of a typical realizations of {pj}. We 

have shown that in a Sinai-type disordered chain ( J (N) }  >~ 1/x/-N (with 
possible logarithmic corrections) for sufficiently large values of N, i.e., the 
steady flux in such a disordered system is much greater than the usual 
Fickian flux J(N)oc 1/N. The numerical data strongly support the 
dependence ( J (N) }  oc 1/x/N. The exact solution of the continuum-space 
analog of this problem leads (Ss) to the same dependence on N. 

6. C O N C L U S I O N  

One can qualitatively explain the results discussed in this report in a 
very simple manner. (56) 

For  the diffusion-controlled reaction A + A ~ 0 fluctuation effects are 
not essential. The rate of this reaction increases with an increase in local 
concentration decreases. Therefore, fluctuation are suppressed (23) and the 
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mean-field theory leads to exact results. ~16) If the random migration is sub- 
diffusive, a special type of fluctuation (odd-even number of particles) is 
important. Let us denote the characteristic displacement by L(t). In a wide 
set of reactive systems L( t )oc  t v. For the slow motion when d v < l  
(so-called compact exploration (57)) in the volume V oc L d no A particle 
survives if the initial number of A's is even. When the initial number of par- 
ticles is odd, then the average number of survivors is equal to unity, which 
leads to the kinetic law CA(t) OC L -d oc t -dr. 

In the course of the reaction A + B ~ 0 the ratio of the characteristic 
fluctuations to the mean concentration increases. (23~ The mean concentra- 
tion in the volume considered is completely determined by the excess of A 
or B particles. Consequently, for random mutually independent A and B 
initial distributions, Ca.B(t) oc L -d/2, which leads to the decay of Eqs. (5), 
(6), and (13). 

For  reversible reactions with the same initial distributions the relaxa- 
tion of the mean concentration has the dependence 6C oc L -d/2. In general, 
the power in these decay laws is a functional of features of the large-wave 
fluctuation spectraJ 29'3~176 

In diffusive motion, v = 1/2. In static recombination, the random walk 
in random environment, (4) polymer systems, (57) diffusion in a 1D hard-core 
lattice gas, and many other important systems, the value of v is less than 
1/2. This leads to a wide variety of nontraditional kinetic laws. 

The kinetic behavior of recombination and annihilation reactions 
is determined by typical small fluctuations. In contrast, the survival 
probability in the trapping problem and averaged flux in systems with 
strong disorder are based on untypically large fluctuations. The probability 
of a given fluctuation decreases with an increase in its magnitude, but its 
contribution to the survival probability increases. As a rule, the most 
significant fluctuation value is determined by the steepest descent method. 
It essentially depends on correlations in the reactive system. 

To summarize, we have presented some results corresponding to 
many-particle kinetics of reactions in condensed media. We have shown 
that the kinetic behavior can be drastically changed due to fluctuation 
effects, spatial correlations between particles, and anomalous transport 
properties. Moreover, we have shown that the correlation-induced kinetics 
in some systems can govern the density evolution over the entire time 
domain. 
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